
The 10th International Symposium for Design and Technology of Electronic Packages
September, 23-26, Bucharest, Romania

SIITME 2004 ISBN 973-9463-83-5215

A New Method for Hardware Implementation of
Artificial Neural Network Used in Smart Sensors

 Ştefan ONIGA, Atilla BUCHMAN

Electrotechnical Department
 North University of Baia Mare, Faculty of Engineering

62A Victor Babes Str., 430083 Baia Mare, Romania
Phone: +40-262-218509 e-mail: onigas@ubm.ro

Abstract

The use of neural networks to add learning and adaptive behavior to smart sensors is essential
and the FPGA implementation is an easy an attractive way for hardware implementation. This pa-
per presents a new method for hardware implementation of neural network using the System Gen-
erator tool for Simulink developed by Xilinx Inc. to implement high-performance DSP systems in
FPGA. This method allow the easy generation of hardware Description Language (HDL) code
from a system representation in Simulink. This VHDL design can then be synthesized for imple-
mentation in the Xilinx family of FPGA (Field Programmable Gate Arrays) devices. With this
method it is possible to add neural network specific, user-created, Simulink blocks to the Xilinx
Blockset. The Matlab is used to perform the off-chip learning task and the neural network weights
are transferred automatically from Matlab workspace to weight (ROM) memory. It this way is
possible to create �application specific neural networks� in an easy and fast time to market way.

1. INTRODUCTION

In recent years, computers have penetrated in al-
most any field of activity, but many applications and
conventionally input devices such us keyboards, mice,
joysticks, etc., are not enough �user friendly� and
many times require parameters setting that can�t be
made by a regular user, without some knowledge.

The efforts made world wide by the large numbers of
universities and research organizations that are in-
volved in designing and building natural user inter-
faces it seems to be not enough because of the lack of
adaptation and learning capabilities. The use of neural
networks to add learning and adaptive behavior to
smart sensors is essential and the FPGA implementa-
tion is an easy an attractive way for hardware imple-
mentation.

C
on

tro
l c

irc
ui

ts

MATLAB
 - Neural Network Toolbox
 - Sistem Generator

FPGA

ANN

Parallel Interface

FSR
Force

sensors
ADUC512

Micro
 controler

PC

Pa
ra

lle
l p

or
t

Fig. 1 The codesign platform

The 10th International Symposium for Design and Technology of Electronic Packages
September, 23-26, Bucharest, Romania

SIITME 2004 ISBN 973-9463-83-5216

This paper presents a new method for hardware
implementation of artificial neural networks (ANN) in
field programmable logic devices (FPGA) that can be
used in intelligent sensors development. Among pos-
sible applications are intelligent computer peripherals
enabling people with any kind of handicap to use
computer and communicate, as any kind of industrial
or domestic device with learning and adaptive capa-
bilities.

The goal of this work was to develop hardware-
software codesign platform enabling the fast devel-
opment of intelligent interfaces with the addition of
hardware sensors and VHDL modules.

2. THE HARWARE-SOFTWARE CODESIGN PLATFORM

This work use a platform, shown in Figure 1, de-
veloped to facilitate the use of codesign techniques.
The platform was developed in order to provide a fast
prototyping environment. The Aduc 512 microcon-
troler is used to implement the Data Acquisition Sys-
tem and to adapt signal sensors to neural network in-
put requirements. The reconfigurable device (XC2S50
Xilinx) is used to implement the neural networks and
other logic blocks of the same application. The Sys-
tem Generator tool for Simulink developed by Xilinx
Inc. allow the easy generation of hardware Description
Language (HDL) code from a system representation in
Simulink. This VHDL design can then be synthesized
for implementation in the Xilinx family of FPGA de-
vices. The developed framework allows device com-
munication with a PC in order, to perform off-chip
training task or, to transfer data for analysis. Software
is designed to manage the communication protocol
with Matlab via parallel port.

The platform may be used in three ways. The first
one is the neural network simulation and learning
phase of the weights, the second is the network design
and hardware implementation using System Generator
tool for Simulink and Xilinx ISE, and the third is
normal use of the network (propagation phase).

2.1. Learning phase

Training of the neural network can be executed
using a given set of inputs with the corresponding
outputs. The inputs for training are collected via par-
allel port of a personal computer running Matlab, and
a data acquisition program developed by author. Input
and output sets are stored in a file and will be used to
determine neural network weights.

The desired network architecture is simulated us-
ing Neural Network Toolbox and the neural network
weights are transferred automatically from Matlab
workspace to weight (ROM) memory represented in
Simulink. Many networks architecture trained with
different methods could be simulated and the network
that is best performing for given application is
choused for hardware implementation.

2.2. Implementation phase

First step for transfer the neural network from
software simulation to hardware implementation is the
network modeling with System Generator tool for
Simulink, using Xilinx blocks or user created, neural
network specific blocks. One layer could be created
using only one ANN block from user created libraries
and the block parameters (number of neurons,
weights, bias) are loaded automatically from Matlab
workspace. If the designed system is well performing
in simulation it could be transformed in VHDL code
that is made automatically by System Generator Tool
for Simulink, developed by Xilinx.

To increase hardware performance, most System
Generator blocks are implemented in hardware using
Xilinx Smart-IP (Intellectual Property) LogiCOREs.
These modules make optimal use of FPGA resources
to maximize performance.

During code generation, the System Generator cre-
ates all project files that are necessary for use in
Xilinx 6.2i ISE. Opening Project Navigator project
file, it is possible to import System Generator design
into the Project Navigator, and from there, it can be
synthesized, simulated, and implemented in the Xilinx
6.2i software tools environment.

Configuration �.bit� file is then downloaded in
FPGA using for example the Parallel cable IV and
Xilinx download program iMPACT.

2.3. Propagation phase

The sensorial outputs from ADUC512 microcon-
troller represented on 8 bits parallel format and sam-
pled at 10 ms are loaded in the neural network imple-
mented FPGA. For testing the developed method we
have used a sensorial system for an artificial hand
composed from:

! Data glove as signal source related with fingers
and hand position

! Force sensing resistors (FSR) to detect contact
with an object and the force being exerted

! Data acquisition system made up with
ADUC512 microconverter

Analog signals from FSR are converted in digital
signals by microconverter. Also it receives serial data
from glove and output both signals time multiplexed
in 8 bits parallel format. More precisely outputs 7
bytes of information about 5 fingers position and 2
about hand position (pitch and roll), followed by 6
bytes of information supplied by 6 touch-pressure
sensors located on the fingertips as well as on the
palm. The FPGA module serves as implementation
framework for neural networks. It receives data from
data acquisition system in 8 bits parallel format and
outputs the recognized posture number.

The recognized posture can serve as feedback in a
control system, or can be transmitted via a signal gen-
erator to the peripheral nervous system for the persons

The 10th International Symposium for Design and Technology of Electronic Packages
September, 23-26, Bucharest, Romania

SIITME 2004 ISBN 973-9463-83-5217

with loss of sensory nerve function, or can be used for
teleoperating a robotic hand.

3. NEURAL NETWORK DESIGN

As mentioned above, with this method neural net-
works could be realized using the specific modules
created with blocks from Xilinx Blockset.

The neural network model presented in Figure 2
has inputs (Xi), plus all the outputs (Y) from other
neurons, feeding into a summing junction (Σ) whose
output feeds an activation function (A). WXi represents
the matrix of weights for inputs of neurons and WY the
matrix of weights for neuron outputs connected to
inputs.

Fig. 2 Neural Network Model

Figure 3 shows the neural network model in
Simulink. The main element of neuron is the multiply-
accumulate (MAC) block. This block could be imple-
mented efficiently using existing dedicated multipliers
in Virtex II, Virtex II Pro or Spartan III FPGAs. For
example XC2V250 (a Virtex II FPGA) has 24 dedi-
cated 18 bits MAC blocks. They can be implemented
efficiently even in other FPGAs without dedicated
MAC blocks, using Xilinx LogiCORE Generator.

Figure 4 presents a MAC block realized using
blocks from Xilinx Blockset library.

Control logic block determines neural network ar-
chitecture. For example determines number of neurons
and the correspondence between inputs and weights.
For simplicity we have considered that all neurons
from a layer are connected to all neurons outputs from
previous layer. In other cases the not necessary con-
nections could be deactivated setting corresponding
weights to zero.

ROM memory is used for storage of neurons in-

puts weights, and the RAM memory as a data buffer.
Transfer function is implemented using look-up

tables.

1
Out1

xlregisterz-1
d

en
q

Register
xlmult

z-3

a

b
(ab)

Multipl ier

q
b

rst

Accumulator

3
Reset Acc

2
Weights

1
Data

Fig. 4 Multiply-accumulate block

The resources consumed by a very simple network
with one layer of 7 neurons are presented in Table 1.
Between parenthesis are shown resources used by the
16 bits multiply-accumulate block.

MAC implemented with

Used resources VIRTEX-II
dedicated
multipliers

Xilinx
LogiCORE
multipliers

Slices 55 (29) 89 (63)
Flip Flops 56 (39) 123 (106)
Block RAMs 0 0
Look-up tables 66 (17) 170 (121)
Dedicated multipliers 1 (1) 0
% from a 50.000
gates Spartan-II

-- 11,58 %

% from a 250.000
gates Virtex-II

3.58 % 5,79

% from a 1.000.000
gates Virtex-II

1,07% 1,73%

Tab.1 Resource consumed by a simple network

The multiply-accumulate operation is the bottle-
neck of ANNs FPGA implementation, because require
a large amount of logic blocks.

The resources depend in a grate measure from the
number of bits used to represent data and weights. The
shown data are for 8 bits representation of data and 12
bits used for weights.

1
Out

addr

Weights (ROM)

Data

Weights

Reset Acc

Out1

MAC

fpt dbl

dbl fpt xlspram

addr

data

we

Data (RAM)

Data adress

WE

Weights adress

Reset ACC

Control logic

addr

Activation function

1
In

Weights

Data

Fig. 3 Neural Network Model in Simulink

A

The 10th International Symposium for Design and Technology of Electronic Packages
September, 23-26, Bucharest, Romania

SIITME 2004 ISBN 973-9463-83-5218

2

ack

1
Out1

In1 Out1

RNA Kohonen

data Out1

RNA 1

data_in

rdy

reset

data_out

ack

Parallel port

xlblackbox2ledhex

Hex to 7
segment

fptdbl

Gateway Out1

fptdbl

Gateway Out

dblfpt

dblfpt

dblfpt

3
reset

2
rdy

1
data

Fig. 5 Gesture recognition network

Definition of system elements is made auto-
matically using variables that are taken from Mat-
lab workspace. In this way dimension of the memo-
ries, registers, counters, as constants and number of
bits/word are automatically loaded in Simulink rep-
resentation of the ANN after the simulation of the
neural network in Matlab.

4. RESULTS

As presented earlier the method was developed
for easy implementation of neural network used in
smart sensors. The chosen application for testing
the method was static hand gesture recognition us-
ing a data glove equipped with optical fiber flex
sensors. Figure 4 presents the implemented con-
figuration for gesture recognition.

First block is a parallel port implementation and
ensure the correct data transfer between data acqui-
sition system and gesture recognition neural net-
work.

RNA1 is Feed-Forward network that can be
trained in many different ways but one of the most
common methods is gradient based learning using
back propagation. Other very used training method
is Hebbian learning rule. We have tested both of
them with good results. RNA 1 is used for input
data preprocessing and is build from one layer of
N1 neurons, where N1 represent the number of sen-
sorial inputs.

The second network used for classification task
is a simple competitive network with one layer of
N2 neurons, one for each of N2 gesture to be rec-
ognized.

Last block is a BCD to 7 segment decoder and it
displays the recognized gesture number.

5. CONCLUSIONS

This paper has presented a new method for the
implementation of neural networks in FPGAs.

The main contribution of this work is the
creation of the framework that permit rapid

development of smart sensors with learning
capability and adaptive behavior.

An other contribution is the creation of neural
network specific modules such as MAC units,
activation function.

The proposed method permit to easily adapt the
number of neurons per layer, the weight of each
input and the activation function.

A testbench was developed for application and
it permit to implement different types of neural
network with different kinds of architecture.

Future work will focus on development of other
neural nework specific modules, optimization of
implemented modules, and implementation of on-
chip learning capability.

6. REFERENCES

[1] Jihan Zhu and Peter Sutton: FPGA Implementations of
Neural Networks � a Survey of a Decade of Progress,
2003.

[2] H. Ossoinig, E. Reisinger, Ch. Steger, R. Weiss: Design
and FPGA-Implementation of a Neural Network. Pro-
ceedings of the 7th International Conference on Signal
Processing Applications & Technology, pages 939-943,
Boston, USA, October 1996.

[3] Dr. M. Turhan Taner: Kohonen�s Self Organizing Net-
works With �Conscience�, Rock Solid Images, November
1997.

[4] K. Boehm, W. Broll, M. Sokolewicz: Dynamic Gesture
Recognition Using Neural Networks; A Fundament for
Advanced Interaction Construction, SPIE Conference
Electronic Imaging Science & Technology, San Jose Cali-
fornia, USA, Feb. 1994.

[5] Rolf F. Molz, Paulo M. Engel, Fernando G. Moraes, Lionel
Torres, Michel Robert: Codesign of Fully Parallel Neural
Network for a Classification Problem, International Con-
ference on Information Systems, Analysis and Synthesis,
Orlando, USA, 2000.

[6] R. Gadea, J. Cerda, F. Ballester, A. Mocholi: �Artificial
neural network implementation on a single FPGA of a
pipelined on-line backpropagation�, Proceedings of the
13th International Symposium on System Synthesis
(ISSS'00), pp 225-230, Madrid, Spain, 2000..

